If the system of linear equations  $x-2 y+z=-4 $   ;  $2 x+\alpha y+3 z=5 $  ;  $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to

  • [JEE MAIN 2024]
  • A

    $60$

  • B

    $64$

  • C

    $54$

  • D

    $58$

Similar Questions

For all values of $A,B,C$ and $P,Q,R$, the value of $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ is

  • [IIT 1994]

${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has

For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

Let $S$ be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

has no solution. Then the set $S$

  • [JEE MAIN 2020]